

Multiscale Modeling: Micro-Encapsulated Carbon Sorbent (MECS) Technology

Debangsu Bhattacharyya, Goutham Kotamreddy, Ryan Hughes, West Virginia University **Janine Carney** (NETL) and Justin Finn (ORISE - NETL) **Zhijie (Jay) Xu** and Chao Wang, Pacific Northwest National Laboratory (PNNL)

Outline

□ What is MECS & Challenges for Modeling MECS

How Can CCSI² Help?

- Process Modeling of MECS
 - Screening the design of reactor
 - Developing optimal design of process
- □ Bench-Scale CFD Model for MECS: A Discrete Particle Model
 - Understanding the MECS behavior at particle scale
 - Calibrating models/parameters at bench-scale for use at device-scale
 - Experiment test bed for validation of device scale
- Device-Scale Model for MECS Performance in Absorber
 - Enabling device-scale prediction of MECS (~100µm) in Absorber (~10m)
 - Understanding complex flow and adsorption kinetics to support process design

MECS Technology

Shell*

-made of silicone

-commercially available as Semicosil

- Core fluid/material
 - -contains solvent (encapsulated by the shell)
 - -Strong potential for solvents that are highly viscous and/or form solid precipitate upon CO₂ absorption

Lawrence Livermore

National Labo

os Alamos

Polymer microcapsules filled with sodium carbonate

THE UNIVERSITY OF

TFXAS

WestVirginiaUniversity,

U.S. DEPARTMENT O

- concentration and loading-difficulty in parameter estimation and model validation
- During operation, solvent concentration and loading need to be estimated

Specific Objectives of Process Modeling for MECS

.....

Lawrence Livermore

Los Alamos

NATIONAL ENERGY TECHNOLOGY

- Understand rate-limiting mechanisms at the commercial scale to identify where resources should be focused
- Estimate model parameters
- Develop optimal contactor type and design
 - Synthesize optimal configuration and operating conditions
 - Helps to develop optimal design of experiments
 - Study transient performance and develop control strategies

THE UNIVERSITY OF

TEXAS

WestVirginiaUniversity,

Model of a single capsule

Assumptions:

- All capsules are perfectly spherical.
- No accumulation in the shell.
- Core is well mixed.
- Shrinking or swelling is neglected (initial version).
- Uniform ambient conditions.
- Mass transfer through the shell only through diffusion.
- No loss of the solvent through the membrane.

Schematic of microcapsule

Kinetically controlled: lacksquareR1: $CO_2 + OH^- \leftrightarrow HCO_3^-$

NATIONAL ENERGY

Equilibrium Limited: ${\color{black}\bullet}$ R2: $CO_3^{2-} + H_2O \leftrightarrow HCO_3^- + OH^-$ R3: $Na_2CO_3 \leftrightarrow 2Na^+ + CO_3^{2-}$

Pinsent B.R., Pearson L., Roughton F.J.W., "The Kinetics of Combination of Carbon Dioxide with Hydroxide Ions", Trans. Faraday Soc., 52, 1512-1520,

Los Alamos

Pacific

Reactions

1956

Lawrence Livermore

THE UNIVERSITY OF

TEXA

West Virginia University

Capsule Model Overview

- Mass transfer from the bulk to the capsule surface:
- Mass transfer through the shell:

$$N_{i,surf} = -k_{i,G}(C_{i,G,bulk} - C_{i,surf}) \qquad \qquad \frac{1}{r^2} \frac{\partial}{\partial r} \left(D_{i,shell} r^2 \frac{\partial C_{i,shell}}{\partial r} \right) = 0 \qquad D_{i,shell} = C_{1,i} \exp\left(-\frac{C_{2,i}}{T}\right)$$

• Mass transfer from the interface to the liquid core :

$$N_{i,L} = E k_{i,L} C_{tot,L} (x_{i,int} - x_i^*) \qquad E = Ha = \frac{\sqrt{k_1 C_{OH} - D_{CO_2,L}}}{k_{CO_2,L}} \qquad D_{CO_2,L} = f(\mu_L, x, T, C_{1L,CO_2}, C_{2L,CO_2})$$

• Chemical Equilibrium:

$$K_{eq1} = \frac{\left[C_{HCO_3^-}\right]}{\left[CO_2^*\right]\left[C_{OH^-}\right]}; K_{eq2} = \frac{\left[C_{HCO_3^-}\right]\left[C_{OH^-}\right]}{\left[CO_3^{2^-}\right]\left[H_2O^*\right]}; K_{eq3} = \frac{\left[C_{Na^+}\right]^2\left[C_{CO_3^{2^-}}\right]}{\left[C_{Na_2CO_3}^*\right]}$$

Phase Equilibrium at interface:

$$\phi_{CO_2} Py_{CO_2,int} = He_{CO_2} \gamma_{CO_2} x_{CO_2,int}$$

$$\phi_{H20} P y_{H_20,int} = x_{H_20,int} \gamma_{H_20} f_{H_20}^L$$

Model of a Single Shell (contd.)

• Mass transfer Coefficients*: Liquid Phase

$$\frac{k_{i,L}d_{int}}{D_{i,L}} = C_L \left(\frac{d_{int}^3 \Delta \rho g}{\rho_L \mu_L^2}\right)^{\frac{1}{3}} \left(\frac{\mu_L}{D_{i,L}}\right)^{\frac{1}{2}}$$

Gas Phase

$$\frac{k_{i,G}d_{surf}}{D_{i,G}} = 2 + C_{G} \left(\frac{d_{surf}^{3} d^{3} \Delta \rho g}{\rho_{G} \mu^{2}}\right)^{\frac{1}{4}} \left(\frac{\mu_{G}}{D_{i,G}}\right)^{\frac{1}{3}}$$

• Diffusion coefficients:

Diffusivity of CO₂ in liquid:

$$D_{CO_2,L} = f(\mu_L, \mathbf{x}, \mathbf{T}, C_{1L,CO_2}, C_{2L,CO_2})$$

Cussler, E. L. Diffusion: Mass transfer in fluid systems. (Cambridge, 1984).

Estimation of Model Parameters

Validation of Capsule Model

25°C

40°C

11

NATIONAL ENERGY TECHNOLOGY LABORATORY N U.S. DEPARTMENT OF THE UNIVERSITY OF Lawrence Livermore National Laboratory WestVirginiaUniversity. Los Alamos **TEXAS** Pacific Northwest NER Ε - AT AUSTIN NATIONAL LABORATORY Carbon Capture Simulation for Industry Impact BERKELEY LAB

Development of a Fixed Bed Model

- Can be used for studying mass and heat transfer characteristics, especially through the membrane and into the core
- Investigate feasibility of a fixed bed contactor
- Mass and energy balance for the gas phase:

$$\epsilon_{bed} \frac{\partial C_{i,g}}{\partial t} = -\frac{\partial (u_g C_{i,g})}{\partial z} + \epsilon_{bed} \frac{\partial}{\partial z} \left(D_{ax} \frac{\partial C_{i,g}}{\partial z} \right) - (1 - \epsilon_{bed}) * n_{capsules} * a_v * N_{i,surf}$$

$$\epsilon_{bed} C_{T,g} C_{v,g} \frac{\partial T_g}{\partial t} = -u_g C_{T,g} C_{p,g} \frac{\partial T_g}{\partial z} + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T_g}{\partial z} \right) - (1 - \epsilon_{bed}) a_p h_{gs} \left(T_g - T_s \right) - \frac{4h_{gw}}{D_r} \left(T_g - T_w \right)$$

• Momentum balance:

 $-\frac{\partial P_g}{\partial z} = \frac{150 \,\mu (1-\varepsilon)^2 u_g}{\varepsilon^3 \, d_p^2} - \frac{1.75(1-\varepsilon)\rho_g |u_g| u_g}{\varepsilon^3 \, d_p}$

• Energy balance between wall and gas:

 $\rho_w \widehat{C_{p,w}} \frac{\partial T_w}{\partial t} = a_{w1} h_{gw} (T_g - T_w) - a_{w2} U (T_w - T_{amb}) = 0$

• Capsule model is embedded in the contactor model

Fixed Bed Results- Base Case

Operating conditions

Pressure	1.1	bar
Temperature	40	°C
Bed Length	10	m
Bed Diameter	3	m
Flowrate	150	mol/s
Solvent loading	10%	wt

Breakthrough Curves at Different Sections of the Bed

Breakthrough Time

• Breakthrough Time for Overall 90% CO₂ Capture:

$$F_{in} z_{CO_2,in} * 0.1 * t_b = \sum_{i=1}^n F_{out,i} z_{CO_2,out,i} \Delta t$$

Where $n = \frac{(t_b - t_o)}{\Delta t}$

• Approximate number of beds for a 550 MWe net subcritical PC plant:

182

NATIONAL ENERGY TECHNOLOGY

.....

BERKELEY L.

Lawrence Livermore National Laboratory

NAL LABORATOR'

LABORATORY

N

Fixed Bed Results-Possible Scenarios

• Assuming mass transfer resistance do not increase with solids formation-best case scenario analysis

Solvent Concentration (wt%)	Bed length (m)	Bed diameter (m)	No of parallel Beds
10	10	3	~182
10	15	3	~ 83
20	15	3.5	~ 67
30	15	3.5	~ 60
50	15	3.5	~ 55

- At 105°C, number of beds decreases to around 50
- Fixed bed may not be right configuration for the MECS under consideration

Conclusions and Future Work

Lawrence Livermore

National Laboratory

- Based on our preliminary analysis, it appears that the fixed bed contactors are not suitable for the MECS system with carbonate solutions. Conclusions may change for other solvents and if a highly active catalyst is available.
- Investigate other types of contactors such as BFB, MB, CFB
- Synthesize optimal configuration and operating conditions

NATIONAL

TECHNOLOG

Quantify uncertainty leveraging the CCSI toolset.

THE UNIVERSITY OF

West Virginia University.

Pacific

Northwest

Los Alamos

16

Objective of CFD Modeling for MECS

CCSI² Goal: Enable device-scale predictive capability for CO2 capture using MECS technology to accelerate development and deployment.

Fluidized bed test

FIG: MECS Fluidization Demonstration¹

Shell Thickness? Solvent type? Circulating solids? Fixed bed? Fluidized bed? Reactor Dimensions? Cooling tubes?

Design Considerations

Capsule size?

"The objective of reactor design is to create the right conditions for reactions. The temperature and reactant species **DISTRIBUTION**, appropriate residence time and removal of products must be considered."

Pannala, S., et al., (2010)

FIG: Multiphase CFD Model Showing Heterogeneity in Domain

Vericella et al., Nature Comms, v. 6, 2015;

Requires

Carbon Capture Simulation for Industry Impact

- Integration of accurate physics and chemistry models
- A comprehensive understanding of all ۲ the significant competing and interacting mechanisms:

NATIONAL ENERGY TECHNOLOGY LABORATORY

· · · · · · · · ·

BERKELEY LA

¹Vericella et al., Nature Comms, v. 6, 2015; Shaffer, F., et al., NETL MFSW, 2010.

Los Alamos AL LABORATOR

Pacific Northwest NATIONAL LABORATORY

West Virginia University.

Approach

Requires

- Integration of accurate physics and chemistry models
- A comprehensive understanding of all the significant competing and interacting mechanisms:

Model the effect of small-scale fluctuations that are too expensive to simulate directly

ABORATORY

Model Challenges

- Elastic, deformable shell
- Capsule size/density change
- Precipitation inside capsule
- Water loss/uptake during capture regeneration
- Hydrodynamics of gas-particle flow
- Disparity in scales

THE UNIVERSITY OF

TEX

FIG: Swelling

U.S. DEPARTMENT OF

ENER

¹Vericella et al., Nature Comms, v. 6, 2015; Shaffer, F., et al., NETL MFSW, 2010.

Accomplishments: Tool Development

 Implemented chemistry, heat and mass transfer into a CFD-DEM simulation model/framework

Considerations

- Shell permeable to CO_2 and H_2O
- Solvent: aqueous Na₂CO₃
- Bulk liquid composition governed by 5 equilibrium reactions
- *NaHCO*₃ precipitate when solubility limit exceeded
- Capsule size/density changes
- Physical properties *mostly* available from literature

 $\begin{array}{c} OH^{-}(aq)\\ Na_{2}CO_{3}(s) & CO_{3}^{--}(aq)\\ H_{3}O^{+}(aq) & H_{2}O(l)\\ HCO_{3}^{-}(aq)\\ Na^{+}(aq) & NaHCO_{3}(s) \end{array}$

Species in chemical equilibrium in sodium carbonate solutions

 $CO_{2}(g) \Leftrightarrow CO_{2}(aq)$ Chemically Enhanced Mass Transfer $N_{CO_{2}} = k_{ov,CO_{2}}a_{p}(p_{CO_{2}} - H_{CO_{2}}[CO_{2}] - p_{shell})$ $\frac{1}{k_{ov,CO_{2}}} = \frac{1}{k_{g}} + \frac{1}{k_{shell}} + \frac{1}{k_{l}}$ $k_{g} = f(Re_{p},Sc_{p})$ $k_{shell} = \mathcal{P}_{shell}^{CO_{2}}/L_{shell}$ $k_{l} = k_{l}^{0}E/H_{CO_{2}}$

$H_2 O(g) \Leftrightarrow H_2 O(l)$ Physical Mass Transfer
$N_{H_2O} = k_{ov,H_2O} a_p (p_{H_2O} - y_{H_2O}^{liq} p_{H_2O}^{sat} (T_p) - p_{shell})$
$\frac{1}{k_{ov,H_2O}} = \frac{1}{k_g} + \frac{1}{k_{shell}}$
$k_g = f(Re_p, Sc_p)$
$k_{shell} = \mathcal{P}_{shell}^{H_2 0} / L_{shell}$

Lawrence Livermore Los Alamos

WestVirginiaUniversity

Accomplishments: Tool Development

 CO_2

 H_2O

✓ Developed a model to represent particle size and density changes

- At equilibrium the shell pressure (p_{shell}) balances mass transfer pressure gradient(s).¹
- Direction of H_2O transfer depends on solution strength and gas relative humidity (RH).
- CO_2 absorption can also drive H_2O desorption.

Accomplishments: Validation

Conducted limited validation studies on *chemistry* using literature data and LLNL experimental data \checkmark

25% ■ 30% • 35% ▲ 40% ▼ 45% ◆ 50% * 60% ×

FIG: Threshold of potassium bicarbonate precipitation comparison with Kohl & Nielsen²

NATIONAL

TECHNOLOGY

Equilibrium Partial Pressure: 10 wt-% Na₂CO₃

*CO*₂ absorption rate measurements³

IMG: MECS in LLNL absorption chamber⁴

THE UNIVERSITY OF

¹Knuutila et al., CES, v. 65, 2010(a,b,c); ²Kohl and Nielsen, Gas Purification, 1997; ³LLNL Data, Private Communication, July 2017; ⁴Vericella et al., Nature Comms, v. 6, 2015

Lawrence Livermore National Laboratory Los Alamos

Accomplishments: Validation

Bench Scale Simulation of MECS Carbon Capture

Bubbling fluidization in NETL's $\mu \text{Fluidized}$ Bed

FIG: μ Fluidized bed in laboratory (left) and MFIX-DEM simulation setup with MECS particles (right) colored by temperature.

> NATIONAL ENERGY TECHNOLOGY

rrrrr

Lawrence Livermore National Laboratory

CFD Setup:

- Pseudo-3D domain: $L_z = 6.67 d_p$
- 32x288x1 Grid $\Rightarrow \Delta_x, \Delta_y \approx 3.2d_p$
- Hertzian contact model for soft silicon capsules:
 - \succ E = 15GPa, $\nu = 0.5$
- Isothermal walls (T=313K)

WestVirginiaUniversity,

Pacific Northwest

Los Alamos

• Enhanced kinetics (100 x k_{OH})

•
$$\Delta t_p \approx 3x 10^{-6} s$$
, $\Delta t_f \approx 1x 10^{-4} s$

FIG: Simulated bubbling behavior

÷.

1000 m

Bench Scale Simulation of MECS Carbon Capture

Lawrence Livermore

National Laboratory

- 75% capture efficiency in bubbling regime with a bed height of 15cm using enhanced kinetics $(100 \ x \ k_{OH})$.
- Interesting effects during *CO*₂ absorption:
 - > Rapid $H_2 O$ loss that humidifies the gas.
 - > $NaHCO_3$ precipitation is very exothermic.
 - > H_20 condenses as gas cools above the bed region.

TECHNOLOGY

rrrrrr

 H_20 Condensed Vapor H_20

FIG: From left to right: gas vol. fraction, gas temp., CO_2 mass fraction, H_2O vapor mass fraction, condensed H_2O mass fraction.

West Virginia University.

Pacific Northwest

Los Alamos

THE UNIVERSITY OF

Tools and Capabilities

Validated model with literature data nd new data from LLNL

Hybrid

DEM

rrrrrr

Lawrence Livermore National Laboratory

Perform simulations of MECS technology in different reactor configurations

TFM

Time-to-Solution

NATIONAL ENERGY TECHNOLOGY

PIC .

WestVirginiaUniversity,

Pacific Northwest

Los Alamos

THE UNIVERSITY OF

TEXAS

U.S. DEPARTMENT OF

Objective & Challenges for MECS at Device-Scale

Los Alamos

Objectives

Development of Framework for Device Scale MECS

Lawrence Livermore National Laboratory

- Understanding MECS behavior in absorber
- Virtual experiment with different operating conditions
 - Effect of MECS particle size
 - Effect of gas flow rate

Challenges

- Multicale (scale disparity $\sim 10^{4\sim 5}$)
 - Tubes and particles

WestVirginiaUniversity.

- Multiphysics+chemical absorption /desorption
- Lack of device-scale design for MECS
- Particle size/density variation with loading

THE UNIVERSITY OF

TEXAS

CFD Model Geometry and Dimension

Using 1MW pilot scale conceptual design for fluidized bed absorber

Zhijie Xu, Canhai Lai, Peter William Marcy, Jean-François Dietiker, Tingwen Li, Avik Sarkar, Xin Sun, *Powder Tech.* 312 (2017) 58

- Originally designed for NETL32D
- Using the same chemistry as the bench-scale discrete particle model for MECS
- Though preliminary, a first attempt to model MECS at device-scale fluidized bed (CCSI² value)

Properties for MECS

Los Alamos

Physical Parameters	MECS
Particle size	120, 240, 360 and 480 µm
Particle density	1000 kg/m3
Shell thickness	7.5, 15, 22.5 and 30 µm
Shell permeability (Highly permeable)	10 ⁻¹² mol / (m s pa) (10 ⁻¹⁴ ~10 ⁻¹³ for polymeric membranes)
Minimum fluidization velocity (u _{mf})	0.0122~0.1952 m/s
Solvent: Na ₂ CO ₃	13 wt%

ENERGY

MECS: CO₂/Na₂CO₃

 $CO_{2}(l) + 2H_{2}O(l) \stackrel{K_{1}}{\Leftrightarrow} HCO_{3}^{-} + H_{3}O^{+}$ $HCO_{3}^{-} + H_{2}O \stackrel{K_{2}}{\Leftrightarrow} CO_{3}^{2-} + H_{3}O^{+}$ $2H_{2}O(l) \stackrel{K_{3}}{\Leftrightarrow} + OH^{-} + H_{3}O^{+}$ $Na_{2}CO_{3}(s) \stackrel{K_{4}}{\Leftrightarrow} 2Na^{+} + CO_{3}^{2-}$ $NaHCO_{3}(s) \stackrel{K_{5}}{\Leftrightarrow} Na^{+} + HCO_{3}$ $H_{2}O(g) \stackrel{K_{6}}{\Leftrightarrow} H_{2}O(l)$ $CO_{2}(g) \stackrel{K_{7}}{\Leftrightarrow} CO_{2}(l)$

$$u_{mf} = \frac{d_s^2 (\rho_s - \rho_g) g \varepsilon_{mf}^3}{150 \mu_g (1 - \varepsilon_{mf})}$$

THE UNIVERSITY OF

TEXAS

WestVirginiaUniversity.

Hydrodynamics Only

Gas phase volume fraction for gas flow 0.72kg/s

IN

Carbon Capture Simulation for Industry Impact

Hydrodynamics + Chemical Absorption

Gas Velocity Magnitude

3.0

2.4

E1.8

1.2

E0.6

Pacific Northwest

Gas Velocity

CO2 Mass Fraction

Particle size: 120 µm Gas flow rate: 0.72kg/s CO2 at gas inlet: 19% CFD value: effect of tubes (size, spacing, orientation...)

- Vertical cooling tubes affects hydrodynamics /absorption
- Gas forms fast flow channels along tubes: channeling

THE UNIVERSITY OF

TEXAS

WestVirginiaUniversity,

Chemical Reactions + Hydrodynamics cont'd

- Baseline gas flow rate: 0.72kg/s
- MECS particle sizes: 120 µm and 480µm
- Capture fraction decreases with gas flow rate
- Absorption better with smaller particle size

Conclusions

□ Models built for MECS particles in a conceptual absorber

- 1MW conceptual design of absorber for MECS
- Filtered method to resolve large scale disparity for tubes
- Fully coupled chemistry module for absorption/desorption
- Limitations and future work:

size/density variation, heat transfer, heat of reaction, drag models

□ Virtual experiment for MECS

- Preliminary results on effects of MECS size and gas flow rate
- CO₂ absorption decreases with gas flow rate
- Smaller MECS particle might lead to a better performance

CCSI² Value

□ Enabling predictive capability for MECS based CO₂ capture

Lawrence Livermore National Laboratory

Los Alamos

- Overall CO₂ capture depends
 - Particle fluidization and spatially distribution
 - CO2 partial pressure
 - Temperature
 - Physical Properties: shell & solvent
 - Reaction parameters kinetics, mass transfer

Different tiers of modeling used together to advance/screen new technology for CO2 capture

THE UNIVERSITY OF

West Virginia University,

U.S. DEPARTMENT O

For more information <u>https://www.acceleratecarboncapture.org/</u>

Debangsu Bhattacharyya, Ph.D. debangsu.bhattacharyya@mail.wvu.edu

Janine Carney, Ph.D. Janine.Carney@NETL.DOE.GOV

Zhijie (Jay) Xu, Ph.D. Zhijie.Xu@pnnl.gov

